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Abstract

For integers n and k, we define r(n, k) as the average number of guesses

needed to solve the game of Mastermind for n positions and k colours; and

define f(n, k) as the maximum number of guesses needed. In this paper we

add more small values of the two parameters, and provide exact value for

the case of n = 2. Finally we comment on the asymptotics.

1 Introduction

In the original version of Mastermind (trademark), there are two players, Code-

Breaker and CodeSetter. The CodeSetter creates a secret code of 4 pegs, each

peg drawn from the same palette of 6 colours. The CodeBreaker must infer the

secret code by asking a series of questions. Each question is itself a candidate

code, and the response is two integers called Black and White. The value of Black

indicates in how many positions there is exact agreement, and the value of White

indicates how many colours are correct but in the wrong position. Another way

to put this is that the sum of Black and White is the maximum number of blacks

over all permutations of the guess code.

There is now an extensive literature on the game. This include papers on

exact values (e.g. [4] for the original 6-colour 4-peg game), asymptotics (e.g. [1]),

computer strategies based on calculation (e.g. [5]) and computer programs using

artificial intelligence ideas (e.g. [2]).

In this paper we consider the exact values. For n positions and k colours, we

define r(n, k) (r for random) as the average number of guesses needed to solve

the game where each secret code is equally likely. The most important result in

this area is that of Koyama and Lai [4] who showed that the original 6-colour

4-position game has the solution r(4, 6) = 5625/1296.

For n positions and k colours, we define f(n, k) (f for foe) as the maximum

number of guesses needed to solve the game against all codes. In a famous

paper, Knuth [3] showed that the original 6-colour 4-position game can always be

solved in 5 guesses, via a greedy strategy. In contrast, Chvátal [1] and Viaud [6]

considered the asymptotics.
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In this paper we add more small values of both r(n, k) and f(n, k). In partic-

ular we provide the exact value for n = 2 and all k. We also show that Knuth’s

strategy does not always solve the game in the shortest guaranteed number of

moves. Finally, we add some comments on asymptotics.

2 Small Values

The following table gives the known values of r(n, k):

C
ol

ou
rs

Positions

2 3 4 5 6 7

2 2 2.250 2.750 3.031 3.500 3.875

3 2.333 2.704 3.037 3.358

4 2.813 3.219 3.535

5 3.240 3.608 3.941

6 3.667 3.954 4.340

7 4.041 4.297

8 4.438

9 4.790

10 5.170

All the values except the r(4, 6) of Koyama and Lai are new, though the very

small values must surely have been observed by several people. These formulas

were determined by computer search (much like in [4]).

The following table gives the known values of f(n, k). These were generated

by computer search too.

C
ol

ou
rs

Positions

2 3 4 5 6 7 8

2 3 3∗ 4 4∗ 5∗ 5∗ 6∗

3 4 4 4 4 5 ≤ 6

4 4 4 4 5 ≤ 6

5 5 5 5 ≤ 6

6 5 5 5

7 6 6 ≤ 6

8 6

9 7

10 7
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For the values marked with a star, Knuth’s strategy fails to be optimal. His

strategy was: as next guess always take the code which minimises the maximum

possible number of remaining contenders. For example, in the 2-colour 5-position

game, his strategy would take 11112 as the first move, but actually need to start

with 11122.

3 Two Positions

We use the usual device of writing a response as a two-digit number, where the

first digit is the number of blacks and the second digit the number of whites.

Theorem 1 For k ≥ 2 the minimum number of guesses needed to guarantee

solution of the 2-position k-color game is f(2, k) = bk/2c + 2.

Proof.(a) A strategy. Guess dk/2e times using two new colours each time.

There is a positive response at most twice. If a positive response twice, then it

can easily be shown that there are at most two possible secrets. (For example if

ab receives 10 and cd receives 01, then secret is either ac or db.) If no positive

response, then k is odd and the secret consists of the unused colour.

If a single positive, then the worst case is ab receives 10 and there is a

missing colour x. Then the four possibilities are aa, bb, ax and xb, but these can

be separated by guessing ax.

(b) A lower bound. Consider any dk/2e − 1 guesses. At least two colours a

and b are unused. The four codes are aa, bb, ab and ba, cannot be separated by

one guess. qed

A general observation is that

f(n, k) ≥ 1 + f(n − k, k),

since response of 0 to first guess leaves at least n − k colours.

Theorem 2 For k ≥ 2, the average number of guesses needed to solve the 2-

position k-color game is

r(2, k) = k/3 + 17/8 + o(1).

The idea is to first solve the game for a set of code of the form aX (with X

a set of colours), then for aX ∪ Xb and for aX ∪ Xb ∪ {aa, bb}, and then solve

the real game. One obtains a series of recurrence relations which are solved with

help from a computer. We relegate the details to the appendix.
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4 Asymptotics

There is a trivial lower bound based on the observation that: for n positions and

k colours there are kn codes but each question can reduce the possibilities by a

factor of at most
(

n+2

2

)

. So:

n log k

log
(

n+2

2

) ≤ a(n, k) ≤ f(n, k).

Chvátal [1] determined the order of f(n, k) if the number of positions is large

relative to the number of colours. In particular, for a fixed k, he showed that

f(n, k) ≤ O

(

n log k

log n

)

,

which matches the lower bound.

Chvátal [1] also showed that f(n, n) ≤ O(n log n), and thus for k large relative

to n

f(n, k) ≤ O(k/n + n log n).

Similar results were obtained by Viaud [6].

When k is fixed, since the value of a(n, k) is sandwiched between the lower

bound and f(n, k), the asymptotics are the same. However, when n is fixed, the

asymptotics are slightly different, as can easily be shown. For fixed n:

a(n, k) ∼
k

n + 1

As a strategy, one guesses codes with n new colours until all colours are

determined. Whenever a positive response is received, one determines the colours

and their multiplicities. By result from statistics, the expected number of guesses

to determine all colours is approx k/(n+1). After that we are left with a problem

with at most n colours and n positions, which can be solve in O(n log n) steps by

result of Chvátal mentioned earlier. The value k/(n + 1) is also a lower bound

as is takes that many queries on average just to determine the colours.
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5 Appendix: Proof of Theorem 2

Let Xm be a set of m colours and a, b distinct colours. Define Hm as the m

codes aXm (with possibly a ∈ X): that is, all guesses with a in the first position

and the other colour in X. Define Gm as the set of 2m codes aXm ∪Xmb. Define

Fm as the set of 2m + 2 codes Gm ∪ {aa, bb}. Finally, define Tm as all m2 codes

taken from X.

Define H(m) (resp. G(m), F (m), T (m)) to be the total number of guesses to

solve Hm, (resp. Gm, Fm, Tm).

For Hm there are only two reasonable guesses: of the form xy and ax. The

code xy reveals the secret if the secret is ax or ay; otherwise m − 2 possibilities

remain for the other colour. The code ax can be the secret; otherwise m − 1

possibilities remain for the other colour. Thus we get recurrence for m ≥ 2:

H(m) = m + min {2 + H(m − 2), H(m − 1)} .

This solves to

H(m) = m2/4 + 3m/2 − 7/8 − (−1)m/8, H(1) = 1.

For G(m) and m ≥ 2, there are only two reasonable guesses up to symmetry:

xy and ax. A positive response to xy leaves 4 possibilities in two pairs, and so 6

more guesses will solve those. A positive response to ax, other than 10, reveals

the code; while a response of 10 or 0 reduces to the problem of Hm−1. So we

get the recurrence for m ≥ 2:

G(m) = 2m + min {1 + 2H(m − 1)), 6 + G(m − 2)} .

This solves to

G(m) = m2/2 + 4m − 13/4 + (−1)m/4, G(1) = 3.

For F (m) and m ≥ 2 there are four reasonable guesses up to symmetry: xy,

ax, xa and aa. For xy, positive means 4 possibilities, in two pairs; negative leaves

Fm−2. For ax, responses 01 and 20 reveal the code; responses 10 and 0 both

leave Hm (with a or b added to X). For xa, response 02 reveals code, response

10 leaves {xb, aa}, 0 leaves Hm, 01 leaves Hm−1. The code aa is worse than

either of the above. It follows that for m ≥ 2:

F (m) = 2m + 2 + min {6 + F (m − 2), 1 + 2H(m), 4 + H(m) + H(m − 1)} .
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which solves to

F (m) = (m2 + 9m + 6)/2, F (0) = 3, F (1) = 7, F (2) = 13.

For T (m) there are only two guesses up to symmetry, and the guess xy is easily

shown to be better. The responses: 0 leaves Tm−2, 01 leaves Gm−2, 10 leaves

Fm−2, 02 leaves yx. Thus for m ≥ 2

T (m) = m2 + T (m − 2) + F (m − 2) + G(m − 2) + 1.

This solves to

T (m) = m3/3+17m2/8−77m/24+m(−1)m/8+39/16−7(−1)m/16, T (1) = 1, T (2) = 8.

Thus expected number of turns is asymptotically k/3 + 17/8 + o(1).
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