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Abstract

Mastermind is a famous two-player game, where the codemaker has to choose a secret code and the codebreaker has
to guess it in as few questions as possible. The code consists of 4 pegs, each of which is one of 6 colors. In Generalized
Mastermind a general number p of pegs and a general number c of colors is considered. Let f(p, c) be the pessimistic
number of questions for the generalization of Mastermind with an arbitrary number p of pegs and c of colors. By
a computer program we compute ten new values of f(p, c). Combining this program with theoretical methods, we
compute all values f(3, c) and a tight lower and upper bound for f(4, c). For f(p, 2) we give an upper bound and a
lower bound. Finally, combining results for fixed p and c, we give bounds for the general case f(p, c).

Key words: Combinatorial problems, Mastermind, Logic game, Computer aided proof

1. Introduction

Mastermind is a famous game invented by Morde-
cai Meirowitz in 1970. It is a two-player game, where
the first player is called codemaker and the second
player codebreaker. While the codemaker chooses a
secret code, the codebreaker does not know this code
and has to ask questions to guess the code. Each
question is a guess for a possible secret. The code-
maker has to answer each question and has to give a
hint how good the codebreaker’s guess is. The goal
of the codebreaker is to discover the secret in as few
questions as possible.

In the original game the code consists of 4 pegs,
each of which is one of 6 colors, i.e., 1296 secrets are
possible. The hint consists of black and white pegs,
where the sum of the numbers of black and white
pegs is not larger than 4. A black peg means that one
peg of the codebreaker’s guess is correct in position
and color, and a white peg means that one peg of the
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(Gerold Jäger), marpe@mimuw.edu.pl (Marcin Peczarski).

guess is correct only in color. The extreme cases are
4 blacks, which means that the guess is the secret,
and no whites and no blacks, which means that the
colors of the secret and the guess are disjoint.

A variation of this game is Static Mastermind,
where the codebreaker has to ask all questions at
the beginning of the game and after receiving all
answers has to find the secret. In 2006 the Static
Mastermind Satisfiability Problem, has been shown
to be NP-complete [11].

In Generalized Mastermind a general number p
of pegs and a general number c of colors is con-
sidered. The corresponding game is called G(p, c).
Of course, such a generalization is also possible for
Static Mastermind. Much research has been done
to find optimum strategies for (Static) Mastermind,
where optimum strategies can mean two different
points. Firstly, find a strategy such that the average
number of questions over all possible secrets is min-
imized. For p pegs and c colors this number is de-
noted by r(p, c). Secondly, find a strategy such that
the pessimistic number of questions over all possi-
ble secrets is minimized. For p pegs and c colors this



number is denoted by f(p, c). Obviously, it holds
r(p, c) ≤ f(p, c).

In 1976 Knuth presented a strategy for the orig-
inal (non-static) Mastermind with p = 4 and c = 6
using a pessimistic number 5 of questions and an
average number 5803/1296 ≈ 4.478 [7]. His strat-
egy is to choose at every step the question that min-
imizes the maximum number of remaining possi-
bilities. Using the information-theoretic bound ex-
plained in Section 2.2, it easily follows f(4, 6) = 5.
The exact value of r(4, 6) was computed by Koyama
and Lai in 1993 as 5625/1296 ≈ 4.34 [8], but the
strategy minimizing r(4, 6) requires up to 6 ques-
tions in the worst case. Values r(p, c) and f(p, c) for
as many pairs (p, c) as possible were computed by
Goddard for the non-static variant [5] and for the
static variant [4]. Recently different techniques like
evolutionary and genetic algorithms [1,6,10], graph
partitioning [2] and a heuristic improver technique
[3] were successfully applied to Mastermind.

In this paper we consider the normal (non-static)
version of Generalized Mastermind and its values
f(p, c). Our first approach in this direction is based
on a computer program. In principle, we do an ex-
haustive search for all possible optimum strategies.
This search is realized by a recursive procedure, i.e.,
the search for strategies using q questions is reduced
to searching for strategies using q−1 questions. The
main reason for the efficiency of our program is the
elimination of isomorphic questions. Furthermore
our program helps to prove our theoretical results
for 2, 3 and 4 pegs. For the case of 2 and 3 pegs we
prove a formula for an arbitrary number c of colors.
Whereas the result for 2 pegs has been known be-
fore, the result for 3 pegs is novel and – to the best
of our knowledge – the second result for an infinite
number of pegs or colors. For 4 pegs we show an up-
per and a lower bound. These bounds are tight up to
some additive constant. Finally we consider the case
of 2 colors and an arbitrary number p of pegs. We
prove an upper bound and a lower bound for f(p, 2).
Considering the values computed by our program,
these bounds do not seem to be optimal. We conjec-
ture about the exact value of f(p, 2). We show that
proving the hypothetical exact upper bound for all
odd numbers p implies it for all even ones.

The paper is organized as follows. In Section 2 we
explain the basics and the main ideas of our com-
puter program and present the new values f(p, c)
computed by the program. In Section 3 our results
for the case of 2, 3 or 4 pegs and in Section 4 for
the case of 2 colors are presented. Section 5 contains

bounds for an arbitrary number of pegs and colors.
We close the paper with a short summary and sug-
gestions for future work in Section 6.

2. Computer aided methods and results

2.1. Masets

While playing G(p, c), the possible secrets con-
sistent with previous answers are subsets of all cp

possibilities. This motivates the definition of a sub-
set of the possible secrets at a particular step of the
game, which we call maset, i.e., a set during Mas-
termind. The size of a maset is defined as the car-
dinality of this subset. We denote the full maset of
cardinality cp by F . A maset of size k is called solv-
able in q questions, if the secret over the k possi-
bilities of the maset can be found using at most q
questions and the corresponding answers, i.e., the
last question is answered with p black pegs. Other-
wise a maset is called unsolvable. Define f(M,p, c)
as the pessimistic number of questions for solving
the maset M with p pegs and c colors. Obviously we
have f(p, c) = f(F, p, c). We observe that a maset
with size k is solvable in q questions, if k ≤ q, i.e.,

f(M,p, c) ≤ q, if |M | ≤ q. (1)

2.2. The information-theoretic bound

For a given number of pegs p and questions q
the information-theoretic bound T (p, q) is an upper
bound for the size of a maset which can be solved in
q questions. Observe that for p pegs (p+1)(p+2)/2
combinations of white and black pegs exist. As the
answer containing p− 1 blacks and one white peg is
impossible, we receive at most

A =
(p + 1)(p + 2)

2
− 1 =

p(p + 3)
2

valid answers.
T (p, q) equals the maximum number of nodes in

the game decision tree of height q (a one node tree
has height one by this definition). In this decision
tree every node represents a question, and every edge
represents an answer which is not p blacks. Answers
with p blacks stop the game. As at most A−1 further
possible answers exist, every node has at most A−1
children. A tree has the maximum number of nodes,
if every node has exactly A−1 children and all leaves
are at the same level. We count all nodes, not only
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leaves, because a game can stop in an internal node,
when the answer is p blacks. Therefore

T (p, q) =
q−1∑
i=0

(A− 1)i. (2)

We conclude

f(M,p, c) > q, if |M | > T (p, q). (3)

2.3. The computer program

With the purpose to compute as many values
f(p, c) as possible, we developed a computer pro-
gram. The program is written in C++. As input
parameters the program uses p, c and the pes-
simistic number of questions qm and it outputs true,
if f(p, c) ≤ qm and false otherwise.

Inside the program we use a new recursive pro-
cedure which takes as input parameters a maset M
and a number of questions q and checks, if M is
solvable, i.e., if f(M, p, c) ≤ q. In the procedure all
possible questions are applied to the maset M . For
each question all possible answers are considered.
For each answer a new maset is produced which is
a subset of the input maset M and consistent with
this answer. Then the procedure is recursively ap-
plied to the new masets with q − 1 questions. The
recursion starts with the full maset F and the given
number of questions qm. The recursion stops, if M
appears to be solvable because:

i) there is a question such that all masets pro-
duced as answers to this question are solvable,
or

ii) the size of M is less or equal to the number of
remaining questions q, i.e., (1) holds.

The recursion also stops, if M appears to be unsolv-
able because:

i) for every question there exists an answer which
gives an unsolvable maset, or

ii) the size of M is bigger than the information-
theoretic bound, i.e., (3) holds.

The masets obtained as answers to a question are
sorted in decreasing order of their size. The biggest
maset for each question is called dominant. Ques-
tions are sorted in increasing size of the dominant
maset. From all masets obtained after a question the
dominant one seems to be hardest to solve. A ques-
tion with the smallest dominant maset seems to be
the most promising question, leading at the earli-
est to solve a given input maset. Therefore at each
recursion level we consider questions in order of in-

creasing size of the dominant maset, starting with
the most promising one. In this way, if the input
maset is solvable, we reduce time needed to find the
solution. On the other hand, to show that a maset
is not solvable we need to consider all possible ques-
tions and for each question we need to find an an-
swer which leads to an unsolvable maset. Therefore
for each question we consider the masets in order
of decreasing size, starting with the dominant one.
Tests of the program confirm that the above heuris-
tics substantially reduces the running time of the
program.

2.4. Isomorphism checking

To further reduce the running time of our pro-
gram we eliminate isomorphic questions. It is known
[7] that in the original game G(4, 6) we need to con-
sider in the first guess only five questions among
all 1296 possible ones, namely the questions aaaa,
aaab, aabb, aabc and abcd, where a, b, c and d are the
first four of all colors. For the first guess all further
questions can be omitted.

We suggest to extend this idea. Two sequences of
questions are isomorphic, if there is a permutation of
pegs and colors mapping one sequence to the other
one. At every step of recursion the sequence of pre-
viously asked questions is extended by one question
in all non-isomorphic ways. To eliminate isomorphic
sequences of questions we use the nauty package for
generating families of graphs without isomorphisms
[9,12].

We represent a sequence of q questions in a game
G(p, c) as a colored graph. The graph contains ex-
actly p(q + 1) + c vertices. The vertices are colored
using q + 2 colors denoted by X, Y1, . . . , Yq, Z. The

Table 1

Computed values of f(p, c) for p ≤ 8 and c ≤ 10

c

1 2 3 4 5 6 7 8 9 10

p

1 1 2 3 4 5 6 7 8 9 10

2 1 3 3 4 4 5 5 6 6 7

3 1 3 4 4 5 5 6 6 6 7

4 1 4 4 4 5 5 6 6 7 7

5 1 4 4 5 5

6 1 5 5 5

7 1 5 5

8 1 6
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vertices x1, . . . , xp are colored with X and repre-
sent the pegs’ positions. For i = 1, . . . , q the ver-
tices yi,1, . . . , yi,p are colored with Yi and represent
the i-th question. The vertices z1, . . . , zc are colored
with Z and represent c game colors. Every peg in a
question yi,j is connected with vertex xj coding its
position and vertex zk coding its color.

Two sequences of questions are isomorphic,
if and only if there is a color preserving iso-
morphism between graphs representing these se-
quences. Note that the isomorphism preserves colors
X, Y1, . . . , Yq, Z, not the game colors.

2.5. Results of computations

The values of f(p, c) computed by our program
are presented in Table 1, where the new values are in
bold face. The previously best values were computed
by Goddard [5]. Note that in the Table of [5] wrong
values for f(2, c) are given (compare the theoretical
result of Theorem 1). The known values were used to
verify the correctness of our program. All values in
Table 1 were computed in a few hours. To compute
some next values we expect to need many weeks of
computation.

3. Two, three and four pegs

Using our computer program, described in Sec-
tion 2, we receive the following results for two, three
and four pegs, and a sufficiently large number of col-
ors.
Theorem 1 It holds:
a) f(2, c) = bc/2c+ 2 for c ≥ 2,
b) f(3, c) = b(c− 1)/3c+ 4 for c ≥ 5,
c) 4 ≤ f(4, c)− bc/4c ≤ 6 for c ≥ 16.

PROOF. We introduce two new games denoted by
G∗ and G∗. For c ≥ p2 let f∗(p, c) be the pessimistic
number of questions in a game G∗(p, c), when in
the p beginning questions we ask about p2 colors, in
each question p different colors. Let f∗(p, c) be the
pessimistic number of questions in a game G∗(p, c),
in which we can use one additional color, i.e., to-
tally c + 1 colors, in questions. We use f∗(p, c) and
f∗(p, c) to obtain upper and lower bounds of f(p, c),
respectively.

Let the number of colors be c = kp + m, where
k ≥ p and m ≥ 0. Assume that we play the game
G(p, kp + m) and we begin asking k questions each
containing p different colors. There are at least

k − p empty answers which discard (k − p)p colors.
Hence the game G(p, kp + m) is reduced to the
game G∗(p, p2 + m) and we have

f(p, kp + m) ≤ k − p + f∗(p, p2 + m).

Using the computer program we have obtained for
two pegs that f∗(2, 4) = f∗(2, 5) = 4. Hence for
k ≥ 2 and m = 0, 1 we have

f(2, 2k + m) ≤ k − 2 + f∗(2, 4 + m) = k + 2

and for c ≥ 4

f(2, c) ≤ bc/2c+ 2. (4)

Using the computer program we have obtained for
three pegs that f∗(3, 10) = f∗(3, 11) = f∗(3, 12) =
7. Hence for k ≥ 3 and m = 1, 2, 3 we have

f(3, 3k + m) ≤ k − 3 + f∗(3, 9 + m) = k + 4

and for c ≥ 10

f(3, c) ≤ b(c− 1)/3c+ 4. (5)

Using the computer program we have obtained for
four pegs and m = 0, 1, 2, 3 that f∗(4, 16+m) ≤ 10.
Hence for k ≥ 4 and m = 0, 1, 2, 3 we have

f(4, 4k + m) ≤ k − 4 + f∗(4, 16 + m) = k + 6

and for c ≥ 16

f(4, c) ≤ bc/4c+ 6.

On the other hand, a strategy for G(p, c) is also
a strategy for G∗(p, c). Hence f(p, c) ≥ f∗(p, c). We
can easily transform a strategy for G∗(p, c + 1) into
a strategy for G∗(p, c) by equating in all questions
the two colors unused in a secret. Hence f∗(p, c +
1) ≥ f∗(p, c). If in the game G∗(p, c) we ask the first
question containing m ≤ p colors and the adversary
gives us the empty answer, we are forced to play the
game G∗(p, c−m). Hence we have

f∗(p, c)≥ 1 + min
1≤m≤p

f∗(p, c−m)

= 1 + f∗(p, c− p).

Consequently for c ≥ c0 we have

f(p, c) ≥ f∗(p, c) ≥ b(c− c0)/pc+ f∗(p, c0). (6)

For two pegs the computer program yields f∗(2, 2) =
3. Hence for c ≥ 2

f(2, c) ≥ b(c− 2)/2c+ 3 = bc/2c+ 2.
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For three pegs the program yields f∗(3, 7) = 6.
Hence for c ≥ 7

f(3, c) ≥ b(c− 7)/3c+ 6 = b(c− 1)/3c+ 4. (7)

For four pegs the program yields f∗(4, 12) ≥ 7.
Hence for c ≥ 12

f(4, c) ≥ b(c− 12)/4c+ 7 = bc/4c+ 4.

For p = 2 ∧ c = 2, 3 and for p = 3 ∧ 5 ≤ c ≤ 9 the
inequalities (4), (5) and (7) are directly verified by
our computer program (see Table 1). 2

In the following we give some remarks about the
proof.

i) Point a) is no new result and was proved inde-
pendently in [2] and [5].

ii) The values needed in the proof of points a) and
b) were computed in some seconds, those for
point c) in a few hours.

iii) For the game G∗ we check isomorphisms only
among colors used in a secret.

iv) Transforming a strategy for G(p, c + 1) to a
strategy for G(p, c), and even proving the in-
equality f(p, c) ≤ f(p, c+1) seems to be rather
difficult.

v) We conjecture that in fact f∗(4, 12) = 8, which
would improve the lower bound of f(4, c) to
bc/4c + 5. But yet our computer program
is not fast enough to prove this. The bound
f∗(4, 12) ≥ 7 was obtained in 3 minutes of com-
putation, and the computation for f∗(4, 12) ≥
8 was not finished in one month.

4. Two colors

Considering Table 1, we conjecture that f(p, 2) =
bp/2c + 2. Unfortunately up to now we have only
been able to prove the following theorems.
Theorem 2 For p ∈ N it holds

f(p, 2) ≤ b3p/4c+ 2.

PROOF. Let the two colors be denoted by a and
b. In the following we give a strategy using at most
b3p/4c+ 2 questions.

Start with question

aaa . . . a (Q1)

containing p pegs of color a. After this we know the
number of a in the secret, say k.

Now we show how to solve the first four pegs of the
secret in at most three further questions. Continue
with question

bbaa a . . . a. (Q2)

If the first two pegs are aa, we obtain k − 2 blacks
as the answer to question Q2. If the first two pegs
are bb, we obtain k + 2 blacks. If the first two pegs
are ab or ba, we obtain k blacks.
Case 1. The first two pegs are aa or bb. The next
two pegs can be solved by two questions as follows.
Ask question

aaba a . . . a. (Q3.1)

If question Q3.1 leads to k + 1 blacks, the third peg
is b. If question Q3.1 leads to k− 1 blacks, the third
peg is a. Continue with question

aaab a . . . a. (Q4.1)

If question Q4.1 leads to k+1 blacks, the fourth peg
is b. If question Q4.1 leads to k−1 blacks, the fourth
peg is a.
Case 2. The first two pegs are ab or ba. Continue
with question

abbb a . . . a. (Q3.2)

Next we will consider question

baba a . . . a. (Q4.2)

We have four possibilities.
i) If the answer to question Q3.2 contains k + 3

blacks, the first four pegs are abbb.
ii) If the answer to question Q3.2 contains k −

3 blacks, the first four pegs are baaa. In both
cases we are done with the first four pegs after
question Q3.2.

iii) If the answer to question Q3.2 contains k + 1
blacks, for the first four pegs the secrets abba,
abab and babb are the only ones consistent with
previous answers. In this case continue with
question Q4.2. Now we have three possibilities.
If the answer to question Q4.2 contains k + 2
blacks, the first four pegs are babb. If the an-
swer to question Q4.2 contains k blacks, the
first four pegs are abba. If the answer to ques-
tion Q4.2 contains k − 2 blacks, the first four
pegs are abab.

iv) If the answer to question Q3.2 contains k − 1
blacks, for the first four pegs the secrets abaa,
baab and baba are the only ones consistent with
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previous answers. Again continue with ques-
tion Q4.2. Now we have again three possibil-
ities. If the answer to question Q4.2 contains
k + 2 blacks, the first four pegs are baba. If the
answer to question Q4.2 contains k blacks, the
first four pegs are baab. If the answer to ques-
tion Q4.2 contains k − 2 blacks, the first four
pegs are abaa.

Thus we have solved the first four pegs. Further-
more we know how many pegs of color a are in the
last p− 4 pegs. We can recursively repeat this step
for the next four pegs by choosing in all further ques-
tions for the first four pegs the correct answer.

Now let p = 4m + r, where r = 0, 1, 2, 3. After
question Q1 we ask 3m questions to guess the first
4m colors. For r = 0 we know all colors. For r =
1 we deduce the last color without any additional
question, because we know the number of colors a in
the secret and the number of colors a in the first 4m
pegs. For r = 2 from the same reasoning we know
the number of colors a in the last two pegs. Thus the
cases aa and bb can be solved without any additional
question and the cases ab and ba by one question. For
r = 3 from the same reasoning we know the number
of colors a in the last three pegs. Thus the cases
aaa and bbb can be solved without any additional
question and the remaining cases by two questions.
Finally we need one question for giving the correct
answer.

Overall we need 3m + 2 questions for r = 0 and
r = 1, 3m + 3 questions for r = 2 and 3m + 4
questions for r = 3. This leads to

f(p, 2) ≤ b3p/4c+ 2. 2

In the following we give some remarks about the
proof.

Observe that starting with question Q2 the num-
ber of whites in an answer does not give any infor-
mation about a secret. Let k′ be the number of col-
ors a in a question and let B, W be the number of
received blacks and whites, respectively. By defini-
tion of W we have

W = min{k, k′}+ min{p− k, p− k′} −B

= p−B − |k − k′|. (8)

Hence W is uniquely determined by B.
The main part of the above proof is the algorithm

which after the first question aaa . . . a allows us to
guess colors of 4 pegs using 3 questions. By computer
search we found that similar algorithms exist for 6

and 8 pegs using 4 and 5 questions, respectively.
However, they are too long to be presented here.

We can improve Theorem 2 as follows. If the re-
maining number of unknown peg colors is greater or
equal 8 we use the procedure for 8 pegs. If it is 6 or
7 we use the procedure for 6 pegs. The color of the
7-th peg is determined, because we know the total
number of pegs colored with a and b. If the number
of unknown peg colors is 4 or 5 we use the procedure
for 4 pegs. The color of the 5-th peg is determined
as above. If the number of unknown peg colors is
less than 4 we use the procedure from the second
last paragraph of the above proof. This gives a bit
better upper bound

f(p, 2) ≤ b5p/8c+ 3.

The next theorem gives a lower bound for the
game with two colors.
Theorem 3 For p ≥ 2 it holds

f(p, 2) ≥ p

log2 p
.

PROOF. For p = 2, 3 the inequality is checked
directly, using Table 1. Let in the following be p ≥ 4.

We consider the game, where we ask the first
question aaa . . . a. Let q be the pessimistic number
of remaining questions in this game. Obviously we
have q ≤ f(p, 2). After receiving the answer to the
first question we know that the secret contains k
pegs of color a and p − k pegs of color b. From the
information-theoretic bound we have T (p, q) ≥ |M |,
where |M | =

(
p
k

)
is the size of the current maset af-

ter the first answer. The worst case happens when(
p
k

)
becomes maximum, which is for k = p/2 or k =

(p− 1)/2 (depending on parity of p). It is not hard
to see that for p ≥ 4 the biggest binomial coefficient(

p
k

)
is not less than (2p − 1)/(p− 1).

By (8), the number of whites in the next answers
does not give any information about a secret. Hence
the number of possible answers is A = p + 1 and by
(2) we have

T (p, q) =
pq − 1
p− 1

.

Therefore in the worst case we have

pq − 1
p− 1

≥ |M | ≥ 2p − 1
p− 1

.

Hence pq ≥ 2p and f(p, 2) ≥ q ≥ p/ log2 p. 2
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By the following theorem, to prove the tight upper
bound f(p, 2) ≤ bp/2c + 2, we only have to prove
the formula for p odd.
Theorem 4 If f(p, 2) ≤ bp/2c + 2 for all p odd,
then it also holds for all p even.

PROOF. Let p be an even number. The claim for
p = 2, 4 follows by Table 1. Suppose now p ≥ 6. Let
f(p− 1, 2) ≤ b(p− 1)/2c+ 2 by assumption. In the
following we show f(p, 2) ≤ bp/2c+ 2.

Start with question

a . . . ab. (Q1)

We observe the following.
Case 1. If the answer to question Q1 contains at
least two whites, the last peg is a.
Case 2. If the answer to question Q1 contains no
whites and a number of blacks which is not p − 1,
the last peg is b.
Case 3. If the answer to question Q1 contains
p − 1 blacks and no whites, the p secrets a . . . abb,
a . . . abab, . . . , aba . . . ab, ba . . . ab and a . . . a are the
only ones consistent with the answer.

For Cases 1 and 2, the last peg is solved and we
have

f(p, 2)≤ f(p− 1, 2) + 1

≤ b(p− 1)/2c+ 3

= bp/2c+ 2.

For Case 3 continue with question

a . . . a︸ ︷︷ ︸
p1

b . . . b︸ ︷︷ ︸
p2

a (Q2)

where p1 = d(p − 1)/2e and p2 = b(p − 1)/2c. We
have three possibilities.

i) If the answer to question Q2 contains p1 + 1
blacks and no whites, a . . . a is the only secret
consistent with the answers.

ii) If the answer to question Q2 contains p1 + 1
blacks and 2 whites, the secret contains b at ex-
actly one of the pegs p1 + 1, . . . , p − 1. There
are exactly p2 secrets consistent with the an-
swers. We find the right one asking at most p2

questions.
iii) If the answer to question Q2 contains p1 − 1

blacks, the secret contains b at exactly one of
the pegs 1, . . . , p1. There are exactly p1 secrets
consistent with the answers. We find the right
one asking at most p1 questions.

All in all we obtain for the worst case

f(p, 2)≤max{p1, p2}+ 2

= d(p− 1)/2e+ 2

= bp/2c+ 2. 2

5. The general case

Combining former results we claim the following.
Theorem 5 For c ≥ 2 and p ≥ 2 it holds
a) f(p, c) ≥ b c−2

p c+ p
log2 p ,

b) f(p, c) ≤ b c−1
p c+ 2pdlog2 pe+ 1.

PROOF. To prove the lower bound we put c0 = 2
in equation (6). We receive f(p, c) ≥ b(c − 2)/pc +
f∗(p, 2). Observe that Theorem 3 gives also a lower
bound for f∗(p, 2). We only need to argue that a
property similar to equation (8) still holds. For f∗
we have W = min{k, k′}+min{p−k, l′}−B, where
l′ is the number of colors b in the question. Hence
W is still determined by B. This finishes the proof
of the lower bound.

To prove the upper bound we show a strategy car-
rying it out. We start by asking b(c−1)/pc questions
each containing different p colors. We obtain at most
p non-empty answers. If there are exactly p such an-
swers, then all colors in the secret are inside ade-
quate questions. If there are less than p non-empty
answers, then we have to consider the remaining r =
c−pb(c−1)/pc colors, which we have not asked for.
Note that 1 ≤ r ≤ p. So we have at most p groups of
colors, in which we have to search for colors in the
secret. Each group contains p colors, except possi-
bly the last special group with r colors. This means
that we limited the number of possible secret colors
to at most p2. Let m be the number of all white and
black marks received up to now. Obviously, m ≤ p.
Note that the last special group contains at most
p−m secret colors.

After that we do a two-phase binary search pro-
cedure. In the first phase we search for colors which
are in the secret. We want to limit the number of
possible colors to at most p. In the second phase we
find the right position(s) for each color.

The first phase is shown in Figure 1. The set C
collects colors which can be in the secret. The outer
loop iterates by groups of colors. For each group g
the set Ag contains the colors from the group and
kg is the number of white and black marks obtained
for the group in the adequate answer, except the

7



Fig. 1. The first phase of the binary search

C := ∅
for each group of colors g do
begin

repeat kg times
begin

X := Ag \ C
while |X| > 1 do
begin

Split X into two disjoint subsets X1, X2

with d|X|/2e, b|X|/2c colors, respectively.
Ask an arbitrary question which contains
all colors from X1, but no further colors.
if non-empty answer then X := X1

else X := X2

end
C := C ∪X

end
end

last special group. For this group we did not ask any
question and we set kg = min{r, p−m}. After each
iteration the set C increases by kg colors. Adding one
color to the set C costs dlog2 pe questions. At the end
of the procedure the set C contains at most p colors
and all colors from the secret are in C. The total
cost of the first phase is at most pdlog2 pe questions.

We start the second phase by asking question
xxx . . . x for each color x ∈ C except the last one.
This costs at most p − 1 questions. The received
number of black marks is the repetition factor of the
color in the secret. We do not need to ask for the last
color, because its repetition factor can be deduced
by the previous answers.

If c > p we know one color which is not in the
secret, say z. Now for each color x ∈ C with corre-
sponding repetition factor we find the right position
using binary search. For already known positions we
use known colors and for the rest we use the colors
x and z. This costs at most

p∑
i=1

dlog2 ie ≤ pdlog2 pe − p + 1 (9)

questions, where (9) is not hard to show. The total
cost of the second phase is at most pdlog2 pe ques-
tions.

If c ≤ p we do not need the first phase of the
binary search. We choose the set C containing all
colors. After the first p − 1 questions of the second
phase we know how many times each color appears
in the secret. If there is a color which is not in the

secret we have our color z. If there is no such color
we choose two colors, say a and b. We are able to find
all positions of color a asking p questions: ab . . . bb,
ba . . . bb, . . . , bb . . . ab, bb . . . ba. For the remaining
positions we do the second phase of the binary search
putting a on all its right positions and using a as
color z. This keeps us within the bound, because it
costs at most (p − 1) + p + (pdlog2 pe − p + 1) ≤
2pdlog2 pe questions.

To finish the game we need to ask the final ques-
tion, which will be answered with p black marks. 2

6. Summary and suggestions for future
research

In this paper we computed new values f(p, c) for
ten pairs (p, c). Furthermore we presented a gen-
eral formula for f(3, c) and a tight lower and up-
per bound for f(4, c). For f(p, 2) we gave an upper
bound and a lower bound. We also found the first
bounds for the general case f(p, c). Most of these
results admit improvements.

We hope that by speeding-up our program we can
find an exact formula for f(4, c). However using the
presented method to obtain a formula for f(5, c)
seems to be difficult, because of the exponential na-
ture of the problem. It is an open question, whether
it holds f(k, 2) = f(2, k) for k ≥ 2. Finally we sug-
gest to transform our methods to the static variant
of Mastermind.
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